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Geometric Critical Exponent Inequalities for 
General Random Cluster Models 
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A set of new critical exponent inequalities, d(1 - 1/6) >>- 2 - ~, dr(1 - 1/6) >~ 7, 
and d/~/> 1, is proved for a general class of random cluster models, which 
includes (independent or dependent) percolations, lattice animals (with any 
interactions), and various stochastic cluster growth models. The inequalities 
imply that the critical phenomena in the models are inevitably not mean-field- 
like in the dimensions one, two, and three. 
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1. I N T R O D U C T I O N  

In the present paper 2 I derive a set of rigorous critical exponent inequalities 
for a general class of random cluster models. The class contains, in par- 
ticular, (independent or dependent, site, bond, or site-bond) percolations, 
lattice animals (with any interactions), and various stochastic cluster 
growth models. The inequalities turn out to imply that the critical 
phenomena in the models in dimensions one, two, and three do not 
coincide with the mean-field theory predictions. Therefore one of their 
consequences is that the mean-field-type critical phenomena cannot be 
observed in any experiments of the random cluster models, provided that 
the experiments are done in our three-dimensional universe. 

The proof of the inequalities is quite elementary and general. It is 
based only on the simple geometric fact that the "fractal dimension" of any 
geometric object is always not greater than the spatial dimension. 

i Physics Department, Princeton University, Princeton, New Jersey 08544. 
2The present work was reported at the 56th Statistical Mechanics Meeting (Rutgers, 

December 1986). 
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The organization of the present paper is as follows. First I describe the 
random cluster models in a general setting, and then list some of the 
specific examples. Next I briefly describe my assumptions and main 
inequalities, and discuss their consequence. Finally I describe the precise 
assumptions and proofs of the inequalities. 

2. R A N D O M  CLUSTER M O D E L S  

Let Z d be a d-dimensional hypercubic lattice, whose elements are called 
sites, and denoted by x, y ..... Denote the origin of Z d by O. A cluster C is 
an arbitrary set of sites that contains O. Assume that, to each cluster C, 
there is associated an appearance probability Probe(C), which satisfies the 
following normalization condition: 

Probe(C ) =  1, for all fl (1) 
C 

where the summation is over all the clusters. Here fl > 0 is a physical 
parameter, which controls the nature of the model. 

The basic physical quantities of the model are defined in the usual 
manner. The cluster size distribution function is defined by 

P.(fi)= ~ Probe(C ) (2) 
c ; I C I  = n  

where the size of the cluster ]CI denotes the number of the sites contained 
in C. The connectivity function (or correlation function) %x(fl) is defined for 
any lattice site x by 

%x(fi)= ~ Probe(C ) (3) 
C ; C ~ x  

Here the summation is over all the clusters containing x. Note that rox(fl) 
represents the probability that the cluster C contains the site x. The mean 
cluster size (or susceptibility) Z(fl) and the characteristic length ~(fl) are 
defined by 

and 

Z ( f l ) = E  ICI Probe(C)= ~ nP,(fl)= E rox(fl) 
C n = l  x E Z  d 

(4) 

r = \ Ex  ~o~(fl) / (s) 
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respectively. Here ~b>0 is a certain fixed constant (say 2). Finally, I 
introduce the connectivity function under the external magnetic field h > 0 
by 

rox(fi, h) = ~ Prob~(C) e -hlcl (6) 
C ; C ~ x  

The corresponding characteristic length ~(fl, h) is defined by (5), replacing 
Zox(fl) by Zox(fl, h). 

Examples. Typical examples of such random cluster models are the 
following. 

1. General percolation models(~): In the (most general) site-bond per- 
colation problem, each site x and each bond {x, y} (x, y are two sites in 
Z a, which need not be the nearest neighbors) are occupied or unoccupied 
according to some probabilistic rule. Any rules are allowed, including 
highly correlated ones, and it is assumed that the tendency of occupation 
increases as fi increases. The most standard choice is the independent per- 
colation model, where each site and bond are occupied with the indepen- 
dent probabilities px= 1 -exp( - f lKx)  and p~y= 1-exp( - f l Jxy  ) (Kx and 
Jxy are fixed, nonnegative constants.) The above cluster C is defined as a 
set of the occupied sites, which are connected to the origin by the occupied 
bonds. 

2. General lattice animals(2): In the problems of lattice animals, one 
only considers a single cluster C including the origin, and specifies the 
appearance probabilities. A standard choice is to set 

e ~lc~(c)  
Pr~ - Z c  e-BIc~(C) (7) 

wheref~(C) is an arbitrary geometric factor. The basic free lattice animal is 
obtained by setting 

10 if C is connected by the bonds of unit length 
f~(C) = otherwise 

3. Stochastic cluster growth models(3): The model is obtained by 
specifying a stochastic rule which determines the way of constructing a 
cluster C ( t+ l ) ,  by adding some (orno) sites to the old cluster C(t). 
Setting the initial condition as C(0)= {o}, and considering the t ,7 ~ limit 
of C(t), one gets the above cluster C. Typical examples are the epidemic 
model ~3) and its modifications. A set of models including DLA is not 
considered, since they do not have a power law cluster size distribution 
like (8). 
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3. CRIT ICAL P H E N O M E N A .  A S S U M P T I O N S  

In a large class of the random cluster models, it is expected that there 
exist critical phenomena peculiar to the second-order phase transitions. At 
the crit ical po in t  tic, the following power law behavior of the cluster size 
distribution function and the connectivity function is expected: 

P . ( t ~ ) ~ n  1/fi 1 as n .~ 0% 6 > 1 (8) 

" r o x ( t c ) ~ l / I x l  d z+, as Ixl ~ ~ (9) 

In the parameter region t < tic, the cluster size distribution function P . ( t )  
decays exponentially in n, and thus the quantities z(t)  and r are finite. 
But as t approaches tic, both z(t)  and 3(/3) are expected to diverge, 
exhibiting the following power law singularities: 

Z ( t ) ~ ( t e - t ) - ~  as fi 7 t ic  (10) 

~ ( t ) ~ ( t ( . - t )  v as t ~ t ~  ( l l )  

Finally, at tic, the quantity ~(tc, h) is also expected to show the power law 
singularity 

~(flc, h ) ~ h  -~  as h ~ 0  (12) 

4. N E W  CRIT ICAL E X P O N E N T  INEQUALIT IES  

The main result of the present paper is that, if one assumes the 
existence of the above critical phenomena, the critical exponents 6, r/, 7, v, 
and # must satisfy the following three inequalities [actually, the precise 
assumptions needed for the proofs are weaker than (8)-(12); see below for 
the details ]: 

d(1 - 1/5) >~ 2 - q (13) 

dr(1 - 1/6) >1 7 (14) 

d#~>l (15) 

Recall that, in the mean-field approximation (1) for the percolation 
models (and a certain class of the stochastic cluster growth models), these 
exponents are calculated as 

6=2,  q=0 ,  7=1,  v= l /2 ,  #=1 /4  

and in the same approximation (2) for the lattice animals, these become 

6=2,  q=0,  7=1/2, v = # = l / 4  
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Substituting each set of these mean-field values into the inequalities 
(13)-(15), one finds that each of the three inequalities implies d~>4. This 
fact means that the complete mean-field behavior is possible only in dimen- 
sions not less than four. 

I make some remarks concerning these results. 

1. In the language of the critical dimensionality, the inequalities 
(13)-(15) establish a rigorous lower bound dc~>4. This bound is not 
optimal, since it is conjectured that dc= 6 for the independent percolation 
models ~I) and d~=8 for the free lattice animals. (2) See Ref. 4 for further 
results on the critical dimensions. 

2. From the view point of the heuristic scaling theory, (1'2) the 
inequalities (13)-(15) are very natural. The scaling theory predicts the 
"scaling relations" 

D ( 1 -  1/6)=2--q,  Dv(1-- 1/6)=7, D#= 1 

where D denotes the "fractal dimension" of a typical cluster at the critical 
point. The present inequalities are (heuristically) derived by combining the 
above scaling relations and a trivial bound D ~< d. 

3. The inequalities (13)-(15) also hold for a model in a lattice other 
than the hypercubic lattice. In particular, one can treat any "fractal lattice" 
by replacing the dimension d by a suitable "fractal dimension" of the 
lattice. 

4. In most lattice animals with Probe(C ) of the form (7), the model 
is not defined in the region 3 > 3~ (since the summation in the denominator 
blows up). Sometimes, it also happens that the model is ill-defined even at 
the critical point /~=3c. Then the inequalities (13), (14) become 
meaningless, since the exponents 6 and r/are not defined. However, even in 
such a case, one can prove inequality (15) by slightly modifying the present 
method. 

5. Combining (14) with Newman's inequality (5) ~ ~> 2(1 - 1/6) for the 
independent (site or bond) percolation models, one gets dv>>,2. This 
inequality was recently obtained directly by Nguyen ~6) and Chayes et al. (7) 

5. PRECISE  A S S U M P T I O N S  A N D  P R O O F S  

The precise assumptions needed for the proofs are as follows. 

A. Z~m=,Pm(~c)~C1 n-1/6 holds for all n=0 ,  1, 2 ..... with some 
6>1  a n d C l > 0 .  

A'. Pn(Bc) ~ C2n  - 1 / 6 ' -  ~ holds for all n =0, 1, 2,..., with some 6 '>  1 
and C2 > 0. 
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B.  ~x;Llxl<~L'Cox(flc)>/C3L 2 " holds for all L=1,2,. . . ,  with some 
t /<2  and C3>0. 

C. *o~(B) <~ To~(~c) holds for all /3 such that /~o ~</~ ~</?c, with some 
/~o</L. 

D. )~(/~)~> C4(/~-/~)-~ and ~(/~)~< C s ( B ~ - ~ )  ~ hold for all /3 such 
that/~0 ~</~ ~</?~, with some C4, C5 > 0. 

E. ~( f l c ,  h)<~ C 6 h - "  holds for all h such that 0 ~< h ~< ho, with some 
h0>0, C6>0. 

Note that all the assumptions A-E, except C, follow from the stronger 
assumptions 3 (8)-(12). The assumption C is very natural from our choice 
of the control parameter/~. 

Then the precise statements and their proofs are as follows. 

Proposition 1. 
d(1 - 1/6) >t 2 - tl. 

Proof. Note that 

Assume A and B. Then we have the inequality 

Z o x ( ~ , ) = ~  IC~ALI Prob~,(C) 
x;Ixl ~< L C 

where AL is the sublattice determined by the condition lxl ~<L. Dividing 
the summation according to the size of the cluster, we have 

IALI 

2 [el Prob~(C)+ ~ IALI Prob~c(C)= 2 ~ Pm(~c) 
c;ICl ~< IALI C;ICI > lAd n= 1 m=n 

(16) 

Here IAL] denotes the number of sites in AL. Since IALI ~ L d, we get the 
desired inequality from A and B. I 

Proposition 2. Assume A, C, and D. Then we have the inequality 

Proof. Fisher (s) proved that 

)~(~) = Y', ~ox(B) <~ const x ~ rox(/~) 
x x;Ixl <~ 2~(/~) 

3 One can interpret the assumptions (8)-(10) as In Pn(flc)/lnn ~ - - 1 / 6 - 1 ,  etc. Then the 
assumptions A-E are true if one replaces (for example) 6 by ~ + e with arbitrary positive 5. 
Letting e "-~ 0 after denying the mequalmes, one gets (13)-(15). 
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for any fl < tic. Then using the assumption C and the bound (16), we have 

[A2~(fl)] 

Z(fl) ~ const • E VoAfl) ~ 2 ~ Pm(flc) 
x;Ixl ~< 2r n -  1 rn = n 

Thus we get the desired inequality from A and D. | 

P r o p o s i t i o n  3. Assume A' and E. Then we have the inequality 
d/~ ~> (1 - 1/6')/(1 - 1/6). If 6 = 6', this reduces to the inequality (15). 

Proof. Note that, in the region 0 ~< h ~< ho, we have 
1/h 

Zox(fl ~, h) = ~ nP.(fi~) e -h" >~ const x ~ nP.(fl~) 
x n = l  n--1 

Again, using the Fisher's bound and (16), we have 

Z ~o~(fl~, h) ~ const x Z Zo~(fi~, h) <~ const • Z vox(flc) 
c x;lx[ ~< 2~(flc,h) x;[xl <~ 2~(flc,h) 

Combining these two bounds, and using A, A', we get 

( l / h ) 1 - 1 / 6 , ~  ~(flc,  h)  d(l - ~/6) 

Then the desired inequality follows from E. I 
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